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Abstract-A detailed numerical simulation was carried out to study the buoyancy induced flow transition 
in a mixed convective flow of air through a bottom heated horizontal rectangular duct. The unsteady three- 
dimensional Navier-Stokes and energy equations were directly solved by a higher order finite difference 
numerical scheme without using any turbulence modeling. Results were particularly presented for Re = 500 
and A = 2 covering a wide range of Gr/Re’ from steady laminar longitudinal vortex flow to unsteady 
chaotic flow. The results indicate that the increasing buoyancy causes the steady laminar flow for Gr/Re’ < 4 
to become a periodic laminar flow for 4 < Gr/Re’ c 19, then to a quasiperiodic flow for 19 < Gr/Re’ < 25 
and finally to a chaotic flow in the downstream for 25 < Gr/Re’ < 40. Thus, the buoyancy induced laminar 
to turbulent Bow transition follows the RuelIe-Taken route. An empirical equation was proposed to 

correlate the locations for Hopf bifurcation. 

INTRODUCTION 

BUOYANCY driven secondary flow in a forced laminar 
flow through a bottom heated horizontal rectangular 
duct can cause significant heat transfer enhancement 
and flow transition to turbulence when the buoyancy 
is high enough. The understanding of thermal and 
flow characteristics in this buoyancy induced vortex 
flow is important in the design of compact heat 
exchangers [I], cooling of microelectronic equipments 
[2], and chemical vapor deposition process [3]. 
Accordingly, a number of experimental, theoretical 
and numerical studies have been carried out to inves- 
tigate this problem in the literature. 

The condition for the inception of the secondary 
vortex flow (onset of thermal instability) driven by the 
upward buoyancy receives considerable attention. In 
a horizontal parallel plate channel (approximately a 
large aspect ratio rectangular duct) with the bottom 
plate at a higher uniform temperature than the top 
one by AT, the critical Rayleigh number for the 
appearance of the vortex flow is around 1708, as pre- 
dicted from experimental measurement [4-91 and lin- 
ear stability theory [4]. Beyond this critical Rayleigh 

number, steady longitudinal vortex rolls prevails and 
the roll wavelength is about twice the channel height, 
i.e. d = 2d. Ostrach and Kamotani [6, 71 exper- 
imentally noted that the vortex rolls become irregular 
as Ra > 8000. For Ra > 18 352 they identified a 
second type of vortex rolls whose wavelength is only 
half of that for the first type vortices, i.e. 1 = d. In the 
thermal entrance region Kamotani et al. [9] indicate 

that the heat transfer rate is affected not only by 
Rayleigh number but also by the buoyancy-to-inertia 
force ratio Gr/Re*. In the mixed convection of nitro- 
gen gas Rosenberger and his coworkers [lo, I I] 
observed the unsteady vortex rolls even for Rayleigh 
number only slightly above the critical value of 1708. 
Besides, the asymmetric roll patterns were found also 
at low Rayleigh numbers. A flow regime map of Re 

vs Ra was proposed to predict the boundaries among 
the flow with no roll, steady and unsteady rolls. 
Finally, the transverse rolls were noted at very low 
Reynolds number by Ouazzani et al. [ 12, 131. They 
also refined the regime map to include the transverse 
rolls. 

A series of experiments have been conducted by 
Incropera and his coworkers [14-191 to investigate 
buoyancy effects of a forced air or water flow in a 
horizontal plane duct with the bottom and/or top 
plates subject to uniform heat fluxes. The onset and 
qualitative picture of the buoyancy driven secondary 
flow on the bottom plate were clearly visualized [ 141. 
Significant improvement in heat transfer over the bot- 
tom plate was found. While over the top plate buoy- 
ancy shows little effect in the laminar flow, it results 
in relaminarization in the transitional and turbulent 
flows [ 151. Their flow visualization distinctly discloses 
four flow regimes along the bottom plate-laminar 
forced convection, laminar mixed convection, tran- 
sitional mixed convection, and turbulent free con- 
vection. The transition to turbulent flow was attri- 
buted to the breakdown of the vortices due to 
hydrodynamic instability [ 171. The onset of instability 
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NOMENCLATURE 

A aspect ratio, h/d x, y, z Cartesian coordinates 

b,d width and height of the duct X, Y, Z dimensionless Cartesian coordinates, 

Y gravitational acceleration x/d, y/d and z/d 

Gr modified Grashof number, gfiqQd4/kv’ Z+ modified Z coordinate, Z/(Re Pr). 
h local convection heat transfer coefficient 
k thermal conductivity 

1, f. dimensional and dimensionless length of 
Greek symbols 

the heated plate, l/d 
thermal diffusivity 

NU Nusselt number, hd/k 
; thermal expansion coefficient 

P,Pm dimensionless and dimensional dynamic 
kinematic viscosity 

-7 
pressures, p,Jpw; 

II density. 

Pr Prandtl number, v/x 
I, 

q* wall heat flux Subscripts 

RC Reynolds number, w,d/v b of bulk quantity 

t,r dimensional and dimensionless time, e values at the duct inlet 

t/W~,) 
W of wall qualities. 

T, 0 dimensional and dimensionless 
temperatures, (T- T,)/(qzd/k) Superscripts 

U, ZJ, w velocity components in x, y, z directions average value 
U, V, W dimensionless velocity components * provisional value 

in X, Y, Z directions, u/w,, V/W, and W/W, n value at the n-th time step. 

was found to be earlier at higher Grashof number 
and/or low Reynolds number [I 81. In addition, a cor- 
relation for the onset points was proposed [ 171. 

Various linear stability analyses have been carried 
out in the literature to predict the onset of vortex flow 
in the fully developed and thermal entrance regions 
of a horizontal flat duct heated from below by Cheng, 
Hwdng and their colleagues [20-221. Their earlier 
results [21] indicate that for Pr 2 0.7 the flow is more 
stable in the thermal entrance region than in the fully 
developed region, but the opposite is true for Pr d 0.2. 
Recently, they noted [23] that increasing Prandtl num- 
ber has a destabilizing effect on the flow for a fixed 
Peclet number. However, increasing Peclet or Rey- 
nolds number tends to delay the onset point. 

In view of the fact that the buoyancy driven vortex 
flow over a bottom heated horizontal rectangular duct 
is three-dimensional, but steady when the Rayleigh 
number is slightly over the critical value and can 
become unsteady, transitional and even turbulent 
when the Rayleigh number is high enough. Direct 
numerical simulation of this vortex flow covering a 
wide range of Rayleigh number is important but rela- 
tively difficult. In the previous studies various sim- 
plifications were made to facilitate the analysis. Cheng 
and Hwang [23] numerically obtained the steady fully 
developed laminar vortex flow in isothermally heated 
rectangular ducts of different aspect ratios by the 
method of successive overrelaxation. Later, Cheng 
and his group [24-271 extended the analysis to the 
steady laminar vortex flow in the thermal entrance 
region with different thermal boundary conditions for 

large Prandtl number fluid in which the inertia force 
terms in the momentum equations can be neglected. 
They noted a minimum Nusselt number occurring at 
some distance from the entrance. They then moved 
further to include the Prandtl number and wall con- 
duction effects [28-301 and found that the large 
Prandtl number assumption is valid for fluids with Pr 

over IO. The effects of thermal radiation was recently 
included by Huang et al. [31]. Similar computations 
were also performed by Incropera and his coworkers 
[32-361 to further consider the combined entrance 
effects, heating from top and bottom plates, wall heat 
flux distribution. and discrete wall heating. The buoy- 
ancy driven longitudinal vortex rolls were found to 
enhance the bottom surface heat transfer by as much 
as 400% over the pure forced convection [32]. In the 
combined entry region, the secondary flow was found 
to consist of longitudinal plumes and vortices that 
first appear near the vertical sidewalls and then propa- 
gate to the interior [33]. No attempt has been made 
to simulate the unsteady vortex flow at high Ra. 

It should be pointed out that in the above analyses 
[23336] the viscous and thermal diffusion in the 
streamwise direction is ignored so that the flow 
becomes parabolic in the flow direction and the solu- 
tion can be marched in that direction, leading to 
tremendous saving in computer time. This approxi- 
mation becomes inappropriate when the vortex flow 
exhibits oscillatory variations in both space and time 
at relatively high Rayleigh numbers. Besides, it is also 
inapplicable to the cases with the Reynolds or Peclet 
number below 100. In a preliminary attempt the pres- 
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FIG. 1. Schematic of the physical system and the detection points at a cross section. (The X and Y 
coordinates at various points are as follows: point l-(1,0.06), 2-(1,0.5), 3-(1,0.92), 4-(0.48,0.08), S-(0.48,0.5), 

6-(0.48,0.92), 7-(0.16,0.08), 8-(0.16,0.92).) 

ent study intends to develop a numerical algorithm to 
accurately predict the steady and time periodic, fully 
elliptic, mixed convective vortex flow in a bottom 
heated horizontal rectangular duct. Figure 1 shows 
the schematic of the system to be investigated along 
with the coordinate system chosen. Initially at t < 0, 

the flow is fully developed and isothermal at T, in a 
thermally well insulated horizontal rectangular duct. 
At time t = 0 a uniform heat flux q”, is suddenly 

imposed at the bottom plate over a finite length I and 
maintained at this level thereafter. The initially uni- 

directional steady flow is significantly modified as the 
heating level is high enough so that the first critical 
Rayleigh number (the onset of vortex flow) and 
second critical Rayleigh number (the appearance of 
time periodic flow) are exceeded. The evolution of 
these complicated flows will be carefully simulated. 

MATHEMATICAL FORMULATION 

Basic equations describing the unsteady mixed con- 
vective flow of a Boussinesq fluid in a bottom heated 
horizontal rectangular duct are 

au av aw 
x+~y+~ = 0 (1) 

au au au au 
x+ uz+ Vay+ wz = -g 

i a9 a2u a2u 
+_Re e+p+r’ I 1 (2) 

av av av 
x+uax+ var+ wg 2!! ay 

aw aw aw aw 
z+ I/ax+ vay+ Waz = -gy 

id, $+fg+&y 
[ 1 (4) 

ae ao 
z+uUax+ vFy+ WE = az & $+&i+$ [ 

2 2 2 

1 
(5) 

subject to the following initial and boundary con- 

ditions : 

atz=OorZ=O,U= V=Q=O 

where the above inlet velocity profile is assumed as 
fully developed with the values of the constants m, 
and m, depending on the aspect ratio A [37]. 

au dv ae aw 
AtZ=2L,Z=E=dZ=Z=0 (7) 

atY=OandZ<L,Fy+I = U= V= W=O (8) 

at all other surfaces, $ = U = I/ = w = 0 (9) 

where n is a unit normal to a surface. The above 
equations are in terms of the nondimensional vari- 
ables defined in the Nomenclature. 

Note that in the above formulation an insulated 
section of length I, is added to the exit end of the 
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heated section to facilitate the prescription of the out- 
flow boundary conditions in the present elliptic Aow 
analysis. The exact out-flow conditions should be 
given at Z + co. in actual computation I, is chosen 
to be long enough so that the predicted flow in the 
heated section is independent of its size. In the pro- 
gram tests several values of I, were used and we chose 
1, = 1. No insulated section is added to the inlet end 
since the upstream diffusion from the inlet can be 
neglected for Re >> 1 which is the situation considered 

here. 
The local Nusselt number measuring the convective 

heat transfer from the plate to the flow in the heated 

duct is defined as 

T,- T,, k 0,-B, 
(IO) 

The spanwise averaged Nusselt number is defined as 

d 

k‘ 
01) 

SOLUTION METHOD 

In view of the complex unsteady three-dimensional 
mixed convective vortex flow to be simulated, a highly 
efficient and accurate numerical scheme is needed. 
After comparing a number of available methods in 
the open literature, we chose the projection method 
[38, 391 combining with the higher order finite diffcr- 
ence spatial discretization to solve the Navier-Stokes 
equations in primitive form on a staggered grid 
system. This splitting (fractional step) method consists 

of two steps. First, a provisional velocity field V* is 
explicitly computed ignoring the pressure gradient, 

where Re is the Reynolds number of the flow and B 
is the buoyancy force. Then, it is corrected by includ- 
ing the pressure effect and by enforcing the mass con- 
servation at time step n + I, 

v”+ 1 _v* 
.-___.- +vp lit! _ 

A? 
-0 (13) 

and 

V.V”+’ = 0. (14) 

Substituting equation (I 3) into equation (14) yields 
the Poisson equation for pressure, 

(1st 

In discretizing the above equations, centered 
difference is used to approximate all the derivatives 
except the convective terms. To enhance numerical 
stability and to yield accurate results for the com- 
plicated flow and thermal evolution studied here, a 

third-order upwind scheme developed by Kawamura 
et al. [40] is employed to discretize these convective 
terms. Specifi~aily for a typical convective term 

where f denotes velocity components or temperature. 
Additionally, the diffusive terms are approximated by 
a fourth-order central difference [41]. For instance 

~~(-.t;+~+166+,-306+l~f, , -,f;_- ,)/12(Ax)‘. 

(17) 

Time advancement may be done either implicitly or 
explicitly. The first-order Euler explicit scheme was 

employed since it was easy to implement. It has much 
lower computational cost per time step, and requires 
much less computer memory allocation than any equi- 
valent implicit implementation. We also found that 
the first-order scheme was sufficiently accurate to 
resolve the smallest physical time scale. The stability 
of the scheme is limited by the requirement that the 
Courant number be less than unity (Anderson et al. 

[42]). To insure the numerical convergence, the Cour- 
ant number is set below 0.5 in the computation, which 
leads to 

The sequence of numerical operation is as follows : 

(1) Explicitly calculate V* from equation ( 12). 
(2) Solve the pressure equation (15) for Pti+’ by the 
vcctorized Gauss--Seidel method with successive over- 
relaxation. Solution for the pressure is considered as 
convergent when the mean relative pressure difference 
between two consecutive iterations is below 10 ‘, that 
is 

I(~::,l’Y+ ’ -(P::lt,‘y”I < ,. 4 

,;~~$$+‘,(r-J.rq (19) 

where i, j, k are respectively the indices of the nodes 
in the X, Y and Z directions, m is the iteration number 
and I, J and K arc the total numbers of nodes in the 
X, Y and Z directions, respectively. 
(3) Explicitly calculate the desired velocity field at the 
new time step, V”“, from equation (13). A uniform 
grid is placed in the computational domain with 
AX = A/I, BY = l/J and AZ = 2LIK. I, J and K are 
varied from 31 to 51 depending on the particular set 
of parameters to be investigated. 

To verify the proposed numerical scheme, a series 
of program tests were conducted. First, the predicted 
spanwise average Nusselt number variations with the 
axial coordinate for the pure forced convection 
(Gr/Re’ = 0) of air in a rectangular duct were found 
to be in excellent agreement with the numerical and 
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FIG. 2. Comparison of the predicted streamwise velocity profiles (solid lines) at selected cross sections at 
X = A/2 with the data of Chiu and Rosenberger [IO] (open circles) for Pr = 0.7, Re = 44.8, Gr/Re2 = 3.43 

and A = 10. 

experimental results of Incropera et al. [33,18]. Then, 
the steady mixed convection of nitrogen in a high 

aspect ratio rectangular duct with its bottom wall at 
a higher uniform temperature over its top wall was 
simulated. The comparison of the computed axial vel- 
ocity profiles for a typical case with Pr = 0.7, 
Re = 44.8, Gr/Re2 = 3.43 and A = 10 with the exper- 
imental data of Chiu and Rosenberger [lo] given in 
Fig. 2 shows good agreement. Similar comparison was 
also made in Fig. 3 to test the data of Maughan and 
Incropera [19] for combined entrance mixed convec- 
tion. The predicted Nu(s) at r = 100 corresponds to 
the results at statistical state. The agreement in the 
overall flow pattern and local Nusselt number is also 
good except that earlier appearance of the vortex rolls 
is predicted in this study. Finally, grid test were per- 
formed. Results from this test are compared in Fig. 4 
for the spanwise average Nusselt number at various 
time instants for a typical case with Pr = 0.7, Re = 100, 

Gr/Re’ = 3, L = 20, and A = 2 in which the steady 

state prevails at large 7. Note that the differences in 
the results calculated from the 31 x 31 x 3 1, 
4lx4lx41and5lx51x5lgridsarealllessthan3%. 
Furthermore, we compare the calculated frequency of 
the flow oscillation for a case with a nigher buoyancy 
at Gr/Re’ = 8. Again, the differences in the results 
from these three grids are also less than 3%. Through 
these program tests, the adopted solution procedures 
are considered to be suitable for the present study. 

RESULTS AND DISCUSSION 

According to the foregoing formulation, there are 
five governing nondimensional groups for the 
problem, namely, the Prandtl number Pr, Reynolds 
number Re, buoyancy-to-inertia ratio Gr/Re’, aspect 
ratio A, and dimensionless heating length L. Con- 
sidering the complex three-dimensional oscillatory 
flow to be simulated, a fully parametric study is for- 

midable. In an initial attempt in this numerical explo- 
ration. attention is focused on the effect of the buoy- 
ancy strength Gr/Re’. In particular, Gr/Re’ is varied 
from 0 to 40 with Pr = 0.72, Re = 500, A = 2 and 
L = 20. 

Before presenting the oscillatory flow at high 
Gr/Re’, we first examine the characteristics of the 
steady vortex flow at low buoyancy. Our predicted 
onset of the longitudinal vortices for various Gr/Re’ 

were cornpaired the data of Kamotani and Ostrach 
[7], Kamotani et al. [9], Chiu and Rosenberger [lo], 
Maughan and Incropera [19], Hwang and Cheng [21], 
and Lee and Hwang [22]. The results indicate that our 
predictions are in reasonable agreement with these 
data. This again supports the use of the proposed 
solution method for the present investigation. Steady 
mixed convective vortex flows for Gr/Re’ = 1, 2 and 
3 are shown in Fig. 5 to illustrate the flow and thermal 
development with the axial distance. Due to the flow 
being symmetric with respect to the center plane at 
X = A/2, only the isotherms on the left half and the 
streamlines of the secondary flow on the right half of 

the channel are presented together to save the limited 
space available for the article. An overall inspection of 
the results reveals that the buoyancy driven secondary 
Bow in the form of two cross-plane recirculation cells 
first appear in the two lower corners in the entry 
portion, causing distortion in the isotherms in these 
regions. In three-dimensional space we have two 
longitudinal rolls in the duct. As the flow moves down- 
stream, these cells gradually grow and diffuse into the 
core region owing to continuing action of the upward 
buoyancy. The secondary flow at every cross-section 
is dominated by these two cells. At a higher buoyancy 
the secondary flow is stronger and the cells are bigger. 
Note that based on the values of the streamfunctions 
the intensity of the secondary flow gets stronger as the 
flow moves downstream except near the exit end of 
the heated section. 
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FIG. 3. Comparison of the Aow pattcrn and spunwise average Nusselt number with Ar data of Maughan 
and lncropera [19] for Pr = 0.7, Rc = 125, GrjRe’ = 5.12. 
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FIG. 4. Comparison of the spanwise average Nusselt number 
at selected instants from various grids for Pr = 0.72, 

Re = 100, Gr/Re’ = 3, A = 2 and L = 20. 

As GrjRe’ is raised to 4, very weak Aow and thermal 
oscillations are noted in the trailing edge of the heated 
bottom plate. For Gr/Re’ = 5 the flow is found to be 

steady in the upstream region, but becomes unsteady 
and oscillatory in the downstream region. Figure 6 
presents three snapshots of the temperature contours 
and secondary flow at selected cross-sections and time 
instants. For clear presentation in Fig. 6 the solid 
and dashed lines respectively are used for cells with 
counter-clockwise and clockwise rotations. It is worth 
noting that, in addition to the vortices originating 
from the lower corners as that at lower Gr/Rc’, two 
new cells are induced in the core region near the exit 
end of the heated section (Fig. 6(g)). These new cells 
are in fact the thermals [17] driven by the upward 
buoyancy near the central portion of the heated 
bottom plate (Figs. 6(f), (8)). Checking the secondary 
flow intensities reveals that the newly formed cells 
grow quickly and later even become stronger than the 
original cells (Fig. 6(g)). Of particular importance is 
the recognition that in each half channel the cell in 
the central portion and the cell near the side wall 
are counter-rotating. Hence the flow is potentially 
unstable. 

To further elucidate the unsteady flow charac- 
teristics for the case with GrjRe* = 5, Fig. 7 gives the 
time traces of the axial velocity component W and 
temperature 0 at eight detection points specified in 
Fig. I at a downstream location Z = 14.84 after a long 
time when the flow has reached a statistical fluctuating 

state and the corresponding power spectrum densities 
(PSD). These time records indicate that after the initial 
transient the flow is in periodic oscillation. Examining 
the time records for U, V, W and 0 at various 
locations from the computer output in detail discloses 
that the amplitudes of the flow and temperature oscil- 
lations are position-dependent. It is of interest to note 
that in a given cross-section the oscillations are nor- 
mally larger at locations outside the longitudinal rolls. 

Besides, the intensities of the oscillations do not 

always increase with the axial distance. In fact. they 
are greatly affected by the axial development of the 

longitudinal rolls. Inspecting the power spectrum den- 
sities, we observe a number of discrete peaks in each 
plot. More peaks appear for a larger Z. Comparing 
the frequencies of these peaks suggests that only one 
fundamental frequency exists irrespective of the detec- 
tion points, ,fi = 0.043. All other frequencies are 

simply the harmonics of this fundamental model, 
which are in fact from the period doubling process 
[43]. To further provide the detailed information, the 
evolution of the secondary flow in a typical period at 
large r at the cross-sections Z = 9.03, I 1.61: 14.19, 
and 16.7 is shown in Fig. 8. The results for Z = 14.19 
and 16.77 clearly show that in a certain part of the 
period the longitudinal vortex rolls in the core region 
grow in size with accompanying shrinkage in the cor- 
ncr cells. In another part of the period an opposite 
process takes place. Scrutinizing the streamfunction 
values above each plot evinces the considerable fluc- 
tuation in the secondary flow intensity at large Z (Fig. 

8(d)). 
As Gr/Re’ is further raised to IO, flow is found to 

be steady in a smaller region near the leading edge of 
the heated plate (2 < 6.54) (Figs. 9(a)-(c)). It is also 
noted that the thermals arising from the central por- 
tion of the heated bottom plate appear at a earlier 
time and closer to the duct inlet. At this higher buoy- 
ancy the unsteady flow in the downstream region is 
still periodic, and is again characterized by a single 
fundamental frequency,/; = 0.073. Further numerical 
experiments for higher buoyancies with Gr/Re2 = 12, 
I5 and I8 manifest that the oscillatory flow is also 
dominated by a single fundamental mode with more 

harmonics at increasing buoyancy. The second fun- 
damental mode is first seen in the downstream region 
(Z 2 14.84) for Gr/Re’ = 19. The flow oscillation is 

characterized by two fundamental frequency modes, 
f; = 0.137 and f? = 0.203, along with linear com- 
binations of their harmonics and subharmonics. Thus 
the flow is quasi-periodic. Raising Gr/Re* further to 

25 the flow near the trailing edge becomes chaotic. 
To illustrate the flow transition from periodic to 

quasiperiodic and finally to chaotic states in detail, 
Figs. 10 and 11 respectively present the time traces of 
0 and W and the corresponding phase space tra- 
jectories which characterize the relative variations of 
three velocity components as time proceeds for 
Gr/Re2 = 30 at three cross-sections. The results for 

detection points 7 and 8 in Figs. IO(a) and I I(a) indi- 
cate that near the duct inlet (Z = 3.23) the flow near 
the side W& is entirely time periodic, as apparent 
from the existence of a single fundamental mode in 
PSD and a limit cycle in phase diagram. Away from 
the side wall region the flow is quasi-periodic with the 
appearance of two fLmdamental modes in the flow 
oscillation and a three-dimensional torus in the phase 
diagrams. The torus is slightfy irregular at location 4. 
A little downstream at 2 = 7.10 the flow in the side 
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FIG. 5. Steady isotherms and streamlines at selected cross sections for Pr = 0.72 and Re = 500, GriRi = I, 
2and3at(a)Z= 1.29,(b)Z= 3.87,(c)Z=6.45,(d)Z=9.03,(e)Z= 11.61,(f)Z= 14.19,(g)Z= 16.77. 



Buoyancy induced flow transition 1243 

(e) 

Cd) 

(b) 

(a) 

8:.02(.021).228 IJI:O(.~ 13)1.125 8:.02(.019).210 1y:O(.O89).888 8:.02(.019).212 w:O(.O77).773 

8:.01(.022).229 v:O(.O64).816 

l3:.0(.022).226 1y:O(.O49).956 

8:.01(.021).223 1+~:0(.060).927 

e:.oi(.o23).231 t+t:o(.o53)1.054 

8:.01(.022).226 yr:O(.O55).933 

mq 

h ,-\, Q 

: ,' 
\_H' 

0:.01(.023).232 ~:0(.053)1.065 

e:.o(.o22).224 ~:0(.051).991 

8:.0(.021).206 y1:0(.049).971 

e:.o(.o23).231 ~:0(.055)1.051 '3:.0(.023).232 yr:O(.O56)1.059 

e:.o(.o21).210 ~:0(.050).975 e:.o(.o21).210 ~:0(.050).977 

8:.0(.018).184 y/:0(.038).759 8:.0(.018).184 y/:0(.038).760 8:.0(.018).185 1y:O(.O38).760 

e:.o(.oi8).179 \~:0(.015).307 

I 1 

tl:.O(.O20).199 1+1:0(.015).285 8:.0(.021).205 yr:O(.O15).288 

T = 15 T= 125 7 = 215 
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FIG. I 1. Phase space trajectories of the velocity components Cl, V and W at selected points for Gr/Re’ = 30 
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wall region is quasiperiodic and the core flow exhibits 
some irregularity but with distinct structure (Figs. 

IO(b) and II(b)). In particular. at locations 1 and 5 
each cycle in the phase diagram is like a butterfly 
which gradually rotates laterally around a certain axis. 
Further downstream near the exit of the heated sec- 
tion at Z = 18.70 the flow is entirely chaotic with 
relatively irregular temperature and velocity signals 
with the banded PSDs. 

To further enhance our understanding of the overall 
flow development, the flow fields for this high buoy- 
ancy case were carefully examined. It is of interest to 
note the significant axial decay and growth of the 
longitudinal rolls. Near the exit of the heated section 
the rolls in the core region are smaller in size and 
fluctuate in a smaller amplitude. Furthermore, the 
thermal boundary layer on the heated plate is unstable 
and prevailed by the travelling waves resulting from 
the strong upward buoyancy. 

Results for the local Nusselt number distribution 
over the heated plate are of value in thermal system 
design. Figure 12 presents these results for 

Gr/Rr’ = 5, IO,20 and 30 at large t. In the entry region 
significant reduction in Nu with the axial distance is 
noted for various Gr/Re’ reflecting the flow being 
dominated by forced convection. A close inspection, 
however, discloses that noticeable spanwise variations 
due to upward thermal buoyancy already appear in 
this entry region especially at higher Gr/Re’. Down- 
stream of the entry region NM levels off somewhat in 
2 direction over some distance before it significantly 
rises but the spanwise variations resulting from the 
presence of the longitudinal rolls become relatively 

substantial especially for Gr/Re’ = 30. This distance is 
shorter at a higher Gr/Re*. Due to the nonmonotonic 
axial variations in the secondary flow intensity the 

axial variations of Nu are also nonmonotonic. Thus 
a complicated instantaneous Nu distribution at 
Gr/Re’ = 30 results (Fig. 12(d)). 

Some important characteristics of the fluctuating 
flow for selected cases are summarized in Table 1. 
In the table (Z’),, is the location where the Hopf 
bifurcation (periodic flow oscillation) is first observed. 
A flow is considered as undergoing a Hopf bifurcation 
when the oscillation amplitude in the local Nusselt 
number at any location on the heated plate exceeds 
3% of the steady value before the oscillation at that 
location. Also included in the table are the fun- 
damental modes of the velocity and temperature oscil- 
lations at large times. Finally, the amplitudes of the 
oscillations at detection points 1, 4, 5, and 7 at cross 

sections Z = 7.10 and 14.83 are given. Note that for 
flow characterized by a single fundamental frequency 
(Gr/Re’ <I 19) the frequency increases with Gr/Re’. 

No simple trend, however, can be identified when the 

second fundamental mode appears for Gr/Re’ 2 19. 
The selected data for the oscillation amplitudes of W 
and 0 at long time given here again emphasize the 

flow oscillation being substantially position depen- 
dent without any simple relation with the downstream 
distance and the mixed convection parameter Gr/Re’, 

as mentioned earlier. An empirical correlation is pro- 
posed to fit the calculated Hopf Bifurcation point 

Ru* = 8413(Z+) ’ “. (20) 

This bifurcation point is found to locate downstream 

Table I. Effects of Gr/Re’ on the Hopf bifurcation, fundamental frequencies and amplitudes of 0 and W oscillations at 
large 5 

Z= 7.10 Z = 14.83 

i 
‘WI), ‘WV, ‘W&M@,) A(@,), A(@,), ‘q@,), A(@,) 

GrlRe’ z+,, NW,), 4W4h 4WJT 4W,) 4WA 4W4), 4WJ, 4Wd 

4.0 0.0380 fi = 0.030 o.ooo,o.ooo, 0.000, 0.000 0.012,0.000,0.000,0.000 
0.000, 0.000, 0.000,0.001 0.060, 0.035, 0.035,0.010 

5.0 0.0220 .fi = 0.043 0.010,0.003,0.000,0.002 0.060,0.050, 0.007, 0.017 
0.060, 0.019, 0.003, 0.007 0.440,0.400, 0.065, 0.090 

8.0 0.0160 f, = 0.060 o.ooo,o.ooo, o.ooo,o.ooo 0.008, 0.100, 0.033,0.095 
0.000,0.002,0.001.0.003 0.014,0.620, 0.100, 0.700 

10.0 0.0130 f; = 0.075 0.000, 0.004, 0.000,0.006 0.014, 0.070, 0.050, 0.080 
0.001,0.025, 0.005,0.030 0.030,0.750, 0.580,0.800 

15.0 0.0086 j; = 0.120 0.001,0.005,0.004,0.070 0.001,0.009,0.005,0.050 
0.005, 0.060, 0.120, 0.850 0.022, 0.140, 0.350,0.320 

19.0 0.0081 f; = 0.137 0.001, 0.008, 0.005, 0.060 0.001,0.004, 0.008, 0.030 
h = 0.203 0.006, 0.120, 0.160, 0.880 0.030, 0.120, 0.120, 0.380 

20.0 0.0073 fi = 0.130 0.001, 0.060, 0.006, 0.070 0.008, 0.400,0.800,0.055 
fi = 0.143 0.012, 0.600, 0.050, 0.800 0.070, 0.040, 0.800, 0.550 

30.0 0.0067 fi = 0.266 0.003, 0.015, 0.007,0.025 0.006, 0.015, 0.017, 0.050 
fi = 0.320 0.030, 0.170, 0.200, 0.480 0.060,0.200, 0.650, 0.550 

35.0 0.0066 f, = 0.200 0.003, 0.010,0.008, 0.050 0.004,0.008, 0.006,0.002 
h = 0.280 0.060, 0.150, 0.550,0.550 0.040,0.140,0.300,0.220 

Note : where A(@,) and A( IV,) are respectively the oscillation amplitudes of temperature 0 and velocity component W at 
the detection point i at large z. 
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of the position where the vortex rolls are first induced, 
the so called ‘Onset of Secondary Flow’. 

CONCLUDING REMARKS 

The effects of the buoyancy-to-inertia force ratio 
Gr,lRe’ on the unsteady and transitional charac- 
teristics of the mixed convection flow of air 
(Pr = 0.72) in a bottom heated horizontal rectangular 
duct are numerically investigated for Re = 500 and 
A = 2. The results indicate that as Gr/Re’ < 4 the flow 
is dominated by two steady longitudinal rolls near 
the side wall. As 4 d Gr/Re’ < 19 the flow becomes 
unsteady after certain critical axial distance from the 
inlet. This critical distance is shorter for a higher 
Gr/Re2 and the unsteady flow characterized by four 
longitudinal rolls is time periodic with a single fun- 
damental frequency along with its harmonics. Then, 
as 19 < GrlRe’ < 25 the flow is steady only in a very 
small region near the inlet. The unsteady flow in the 
downstream region is nonperiodic and characterized 
by two incommensurate frequencies and their linear 
combinations. For Gr/Re’ 3 25 the flow is chaotic in 
the exit region near the trailing edge of the heated 
plate. The above results suggest that the buoyancy 
induced flow transition follows the Ruelle-Taken 
route [43]. 
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